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Apologies to Professor Bohm!
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Quantum and Classical Liouville Equation

The quantum Liouville equation:

in9P ~
hor = [H, 7]
The classical Liouville equation:
dp
- _(H
5 = UHhr}
where the Poisson bracket is
8H dp OpOH
H et O il

These are connected by the Correspondence Principle:

(A, 5] — in{H, p} + O(h%)
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The Wigner Function

A phase space representation of a quantum density operator p:

o0

1 ~N .
pwia.p.t) = 5 / <q-=3%lp(t)lg+% > e/ dy

—00

For a pure state with wave function (g, t) this becomes

17 . ,
pw(a.p.t) = 5z [ 0@+ 5 000a - 5 e dy
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Wigner Function Equation of Motion

The quantum Liouville equation again:
op .
T _1H. b

5 = L7l

After some algebra, the Wigner transform the Liouville equation can be
written as

ik

9 0 I
dpw __pIpw / J(q,p = E)pw(q, & t)de

ot m Oq
where
! —i
Ham) = 5o [ Via+5) = V- 9] e ™ dy
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Expression for the Kernel J(q,7)
The kernel can be evaluated to give
4 o —2i
J(a.n) = 251w (V(2n/R)e2m9/")

The result for a Gaussian barrier:

2
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Wigner Function Equation of Motion

For a V(q) with a power series expansion J(g, p) becomes

h2

+ ﬂV///(q) 5/”(p) 4.

J(a,p) = =V'(q) 0 (p)

The Wigner function equation of motion is then

2 3

ot  m dq op 24 op3
The nth term:

(—1)"ﬁ2" d2n+1 V(q) a2n+1pW(q’ p)
22n(2n+1)! dq2n+1 8p2”+1
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Classical Continuity in Phase Space

The classical Liouville equation

dp

is a continuity equation for incompressible flow in phase space:
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The classical continuity equation:

5= "V i=1{H.p}
where
= ([ 0/0q - OH/op : . _
V—<8/8p> J—(a,_,/aq>p 9q/0q+ 9p/0p =0

The current ] is then the density times the phase space velocity field

=i ()= (onlon)

Recovering Hamiltion's equations!

Craig C. Martens Quantum Trajectories in Phase Space



Introduction
Classical mechanics vs. quantum mechanics
Wigner representation

Entangled Trajectory Molecular Dynamics

Solving the Classical Liouville Equation Using Trajectories

Represent the continuous function p(q, p, t) in phase space by a discrete
sampling with N trajectories.

N
p(q,p. 1) Z (9= q;(1))5(p — pi(1))

where g;j(t) and pj(t) is the phase space location of the j trajectory at
time t.

Each member of the ensemble then evolves (independently) under
Hamilton's equations.
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Quantum Liouville Equation in the Wigner Representation

The Wigner function obeys the phase space equation

dpw p Opw o \Opw h? m 83PW
2w FEPW L (g2
ot m 9q (q) op 24 (q) op3 +
Cast as a continuity equation (even though p\ can be negative!):
apw
V. jw=0
ot TV =

which defines a quantum currenth:
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Quantum Trajectories

The quantum current then defines a vector field in phase space:

vV =jw/pw

These give a generalization of Hamilton's equations:

q: Vq = B
m
h? 1 90%pw
H — — 7\// 7\//// =
p=p (q) + 5, (q)pW a0

A pyw—dependent Bohmesque “quantum force”.
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Energy Conservation

The quantum trajectories do not conserve energy individually.

dH . 0H  9H p<712 182 )

_ o V" aq) =2
dt qaq tP 8p 24 (a) p Op? *

Energy is conserved at the ensemble level.

< > // o 999p = // ( v )g;§+-~-)dqdp:o

This non-conservation of individual trajectory energy allows quantum
effects to be modeled.
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Entangled Trajectory Molecular Dynamics

For the jt trajectory:

1 82PW(Q17QZ7~--7PN)

_|_ e
PW(QL q2, - - '7pN) apQ

h2
N, — V/ ) - V/// )
pJ (qj) + 24 (qJ)
The equations of motion depend not only on the Hamiltonian H(gq, p) at
each point in phase space, but on the entire state pyy,. This, in turn,
depends on the entire ensemble.

The members of the ensemble are thus entangled with each other. The
statistical independence of ensemble members in classical mechanics is
thus lost for quantum trajectories!
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Classical and Quantum Trajectories

p

classical

p

quantum

p(g.p.t)

p(q,p,0)
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A Caveat

The Wigner function py/(q, p, t) is real, but can become negative. Can its
evolution be represented by an ensemble of trajectories evolving under
these equations of motion?
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Local Gaussian Ansatz

Numerical Methodology: Local Gaussian Ansatz

An approximate local Gaussian ansatz for the Wigner function.

(g, p) = AePa(a=a)*=Fo(p=pi)* +7(a=ai)(p=pi) +ag(a=a)+ep(p—pi)

around the point k.
Assumption: p is on average positive and smooth (formalize later).

The parameters aq, ap, Bq, Bp, and «y are determined locally for each
member of the ensemble from the moments of the whole ensemble. Then,

S =a% 25, =7 = ap— 12020, + 12

etc.
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Numerical Methodology
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The Trick: Modified Moments
The generator of modified moments is

[ee] oo
7_ — B2 —Bon?+vEntogé+
/ _/ / e B3a€” = Bpn” +vEn+aq+apn ¢hq,hp(§,77) dédn,
—0o0 —0oQ
where this includes a local Gaussian window function ¢:

Pha by (£:1) = exp (—hg&® — hpn?)
The modified mt™, nt" moment of &, 7 is then

&m"e) _ S €™M "$(& m)p(€ n)dédn
() J [ o€ n)p(&,m)d&dn

(€mnn) =
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Numerical Methodology

Local Gaussian Ansatz

Modified Moments

For p a local Gaussian, these moments are generated by derivatives of I:

- 1 9lm+n)
) = 7 Doy
Generalized variances and correlation:
. - ~2 ~2 ~
58 = (€2) — (&) 2= () — (n) 52, = (&n) — () (n)

~2/°\ =~ 2/¢ O¢
o= (27722 L <f> o = 2(526,% — o) e
O¢" 0y~ — O¢y n n

etc.
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Numerical Methodology

Local Gaussian Ansatz

Modified Moments from Ensemble

The required modified moments can be calculated easily from the evolving
ensemble:

S (a — @)™ — P)"d(qj — G Pj — Pr)
Zszl (9 — Gk, Pj — Pk)

(5";77">k =

@ This employs /ocal data when determining the local Gaussian fit.

@ Distinct parts of the ensemble will be represented by different
Gaussian functions, in general.

@ The method is stable—no NaNs.

@ In practice, the local window function ¢ is taken to be a minimum
uncertainty Gaussian. An implicit Husimi representation (see below).
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Tunneling Through a Barrier

Tunneling in a Cubic Potential

Vig) ~ p
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Applications Tunneling in Cubic Potential

ETMD for Cubic Potential

1 1
V(q) = §mw§q2 - gbq3

The quantum force on the j member of the ensemble:

: h2b 0%p/0p*(qj, p))
pi=—V'(q) - 1 a.o) J ’
p(gj, pj)

. , w2b, ,
pi=—V'(q;) — ﬁ(aw’ —206p,)

U~§2<7~7> - 0'2772<g> By = O¢ — h,

ap = ——5— . = 5/22-2 -~ 4
. 2(de"dy” — o)
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Applications Tunneling in Cubic Potential

Classical Ensemble in Phase Space
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Entangled Ensemble in Phase Space
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Applications Tunneling in Cubic Potential

Reaction Probability vs. Time: Classical and Entangled
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Applications Tunneling in Cubic Potential

Tunneling Rate vs. Mean Energy
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Applications Tunneling in Cubic Potential

Eckhart Barrier

The method also captures the quantum corrections to tunneling through
the Eckhart barrier.
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The Husimi Representation

Husimi Distribution: Positive Phase Space Distribution

The Husimi Distribution

The Husimi distribution is a locally-smoothed Wigner function:

® _(@=d)? _(p=p")?

1
pH(qu)Zﬁh/pw(q’,p’)e ¥ e % dq'dp/

—0o0

where the smoothing is over a minimum uncertainty phase space Gaussian,

h
2

0q0p =
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The Husimi Representation

Operator Formulation of Husimi Distribution

The smoothing can be represented using smoothing operators Q and P

2
1.2 1,20

50, ~ 505+

Q = e27702 P = &2

The Husimi can then be written as a smoothed Wigner function as:

pH(a,p) = QPpw(q, p)

This is related to the interesting identity:
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The Husimi Representation

Smoothing and Unsmoothing

We can consider the inverse unsmoothing operators @2 and P~ 1:

2 92 “ 12 82
q

A 1 1
Rl =e 27907 Pt = 2%

so that the Wigner function can be written (at least formally) as an
“unsmoothed” Husimi:

pw(a,p) = QP pu(q, p)

(Unsmoothing is risky in practice, of course!)
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The Husimi Representation

Equation of Motion for the Husimi Distribution

We can then derive an equation of motion for the Husimi distribution.

apH 1. ~o1 apH / 2 A1
— _ — ppp1ZEH
o p 9q + [ QJ(q,n)Q *pr(g,p+n,t) d§

Note that there are no approximations; the Husimi representation provides
and exact description of quantum dynamics.

Powers of the coordinates and momenta become differential operators:

QeQt=q+02 ; PpP~t =p+o2 > 9
A oa 0 2 02
2
— 25292
Qe Q™" q—l-o—i-oqqa—i- (9
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The Husimi Representation

Equation of Motion for the Husimi Distribution

Wigner function equation of motion:

dpw p dpw > o Opw | W?b OPpw
rPw . F YPW —b re
B m g T (mwsq — bg?)

op 12 9p3

0 1. o 40 A a A oa 1.0 h?b 03
IPH _ _ Zppp PR | (mu2QqQ Y — bQqrQ )L | D28 PH
ot m dq

where
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The Husimi Representation

Continuity in the Husimi Representation

We again invoke continuity, now rigorous for a positive probability
distribution.

opH | = =
“FH =0
ot + V- JjH
Then after a little algebra,
- o 0 /p
JH = 87q (;PH)
0 hb hbg Opy Wb 0%py  h%bO%pny
_— =V -
+8p ( (@)pn + 2mw, PH mw, dq  4m2w?2 9q? 12 9p?
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The Husimi Representation

Phase Space Vector Field in the Husimi Representation

The phase space vector field then becomes

a=2
m

hb hbg 1 OpH b 1 0%py Wb 1 0%py

2mw,  mwepy 0q | 4mPw2 py Dq? 12 py 0p?

p=-V'(q)+

The quantum force now contains additional terms not present in the
Wigner representation quantum force. This is related to the fact that
classical propagation and smoothing do not commute.

These equations of motion can be propagated as before.
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The Husimi Representation

Free Particle in the Husimi Representation

Because of the smoothing, the free particle motion is nonclassical!

0 14 0
PH _ ~ ppp1ZPH PH
ot m 0q
or )
Opn _ 1 papH op 8py
ot m~ Jq m 0qop
The extra terms due to noncommutativity of classical time evolution and
smoothing.
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The Husimi Representation

Free Particle Propagation: Entangled vs. Exact
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Methodology, Revisited

Solving the Integrodifferential Equation Directly

Methodology, Revisited

The Wigner equation of motion:

o0

Opw __pIpw / Ha,p— E)pw(a.€, t)de

—00

Write the divergence of the flux directly in this form:

> 0

V=5 (Bow) = [ Ha.€ - phowla.c0) de
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Methodology, Revisited

Solving the Integrodifferential Equation Directly

The momentum component:

a({)pfva == / J(q.§ — p) pw(q.& t) d€
o oo
Jwp=— / ©(q,¢ — p) pw(a,§, t) d¢
where h )
©lg.£-p) = /J(q,f—z) dz
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Methodology, Revisited

Solving the Integrodifferential Equation Directly

This can be written explicitly in terms of the potential V/(q):

o0

e~ i(€=p)y/h

Oa¢ ) =5y [ Va+3)-Via- 9] == d

—00

Then the quantum trajectory equations of motion become
. _ P
q P g—
m

N B
P / O(q,p — E)pw(,€) d¢
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Methodology, Revisited

Numerical Approach

To proceed numerically, we write the Wigner function as a superposition of
Gaussians:

N
1
pw(a.p.t) =5 > ¢(a - qi(t).p — pi(1))
j=1
where ) )
_ B R
#(a.p) = 3 o p ( 202 203>
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Methodology, Revisited

Numerical Approach

After some algebra, we find

YN 6a(a— q)Nq — qj.p — p))
ZJ,'V:1 ¢q(q - qj)¢p(q - qj)

where

Na—aj, p—pj) =/ Vg +2/2) ~ V(g = 2/2) exp [/(p — Pz _ 0522] dz

z h 2h?

This can be evaluated numerically for a given potential V(q).
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Methodology, Revisited

Reaction Probability vs. Time: Classical and Entangled

This method gives better long-time agreement for the cubic system:

1
Eo=2Vo ]
> 0.8 c
=
- I Y oot JUpp
e e
o
o
s — |
E0=0.75Vo .
S 04 TV,
& =
@
i
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0
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(Black=exact, red=old method, blue=new method.)
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Conclusions

@ It is possible to define quantum trajectories in a non-Bohmian phase
space context.
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Conclusions

@ It is possible to define quantum trajectories in a non-Bohmian phase
space context.

@ The phase space quantum trajectory formalism can give nearly
quantitative results for manifestly quantum mechanical processes such
as tunneling in model systems.
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Methodology, Revisited

Conclusions

@ It is possible to define quantum trajectories in a non-Bohmian phase
space context.

@ The phase space quantum trajectory formalism can give nearly
quantitative results for manifestly quantum mechanical processes such
as tunneling in model systems.

@ The methodology gives an appealing picture of quantum processes.
For instance, tunneling is accomplished by borrowing, not by
burrowing.
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Methodology, Revisited

Mortgage Crisis in Phase Space?
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